Skip to contents

Print summary information about beam.stats object

Usage

# S3 method for class 'beam.stats'
print(x, ...)

Arguments

x

An object of class "beam.stats"

...

Other arguments passed to or from other methods

Value

Messages about the beam.data object

Examples

data(beam_stats)
print(beam_stats)
#> Contains 6 association estimate matrices with 10 bootstraps: 
#>   Association Estimate Matrix of Lesion with MRD29 has dimensions 20 x 11. 
#>   Association Estimate Matrix of RNA with MRD29 has dimensions 20 x 11. 
#>   Association Estimate Matrix of Lesion with EFS has dimensions 20 x 11. 
#>   Association Estimate Matrix of RNA with EFS has dimensions 20 x 11. 
#>   Association Estimate Matrix of Lesion with OS has dimensions 20 x 11. 
#>   Association Estimate Matrix of RNA with OS has dimensions 20 x 11. 
#> 
#> Example Association Estimate Matrix for Lesion with MRD29: 
#>                               boot_0      boot_1      boot_2      boot_3
#> ENSG00000264545_loss     -0.19093600 -0.18285072 -0.21417250 -0.20583809
#> ENSG00000147889_loss     -0.19931154 -0.17555327 -0.20297360 -0.19104882
#> ENSG00000224854_loss     -0.18613078 -0.17555327 -0.21375800 -0.18794477
#> ENSG00000148400_mutation -0.02983458 -0.03084684  0.05543433 -0.01137685
#> ENSG00000099810_loss     -0.13672414 -0.12616440 -0.16711568 -0.11536782
#>                                boot_4
#> ENSG00000264545_loss     -0.156257583
#> ENSG00000147889_loss     -0.210577002
#> ENSG00000224854_loss     -0.163050513
#> ENSG00000148400_mutation -0.001250098
#> ENSG00000099810_loss     -0.090666306
#> 
#> Example Association Estimate Matrix for RNA with MRD29: 
#>                       boot_0       boot_1      boot_2       boot_3      boot_4
#> ENSG00000121410  0.045547007  0.004894953  0.11539090  0.091368164  0.12737124
#> ENSG00000148584 -0.043899068 -0.027183517 -0.03688248 -0.066976684 -0.06705541
#> ENSG00000175899  0.071592760  0.035710522  0.08890343  0.060304200  0.04032931
#> ENSG00000166535  0.000296431 -0.011542505 -0.07000542  0.003024411  0.03280950
#> ENSG00000184389  0.088934788  0.053931057  0.12269236  0.205216952  0.11770464
#> 
#> Example Association Estimate Matrix for Lesion with EFS: 
#>                                boot_0      boot_1       boot_2      boot_3
#> ENSG00000264545_loss      0.311047946 0.192434740 -0.027644863  0.45783281
#> ENSG00000147889_loss      0.355335350 0.212469747 -0.005443877  0.49058097
#> ENSG00000224854_loss      0.358707580 0.212469747  0.010605097  0.52911969
#> ENSG00000148400_mutation -0.008535379 0.101993852 -0.185038910 -0.09593391
#> ENSG00000099810_loss     -0.015810223 0.006761143 -0.488404478 -0.18680785
#>                             boot_4
#> ENSG00000264545_loss     0.6079674
#> ENSG00000147889_loss     0.6584991
#> ENSG00000224854_loss     0.6237131
#> ENSG00000148400_mutation 0.1068464
#> ENSG00000099810_loss     0.2182788
#> 
#> Example Association Estimate Matrix for RNA with EFS: 
#>                      boot_0     boot_1      boot_2     boot_3      boot_4
#> ENSG00000121410  0.05921417  0.1825319  0.34583467  0.1120400  0.07337122
#> ENSG00000148584  0.17012792  0.2792833  0.35866190  0.2208551 -0.50231550
#> ENSG00000175899 -0.11536335 -0.1158022 -0.02586119 -5.6659243 -3.05803752
#> ENSG00000166535  0.24454397  0.3871298  0.45451663  0.2155649  0.19137130
#> ENSG00000184389 -0.13690629 -0.2247154 -0.12818200 -0.2024793 -0.02224107
#> 
#> Example Association Estimate Matrix for Lesion with OS: 
#>                              boot_0     boot_1     boot_2       boot_3
#> ENSG00000264545_loss      0.8932939 0.82087274  0.7774685  1.007661292
#> ENSG00000147889_loss      0.9489993 0.84854596  0.8068623  1.045121725
#> ENSG00000224854_loss      0.9563505 0.84854596  0.8400789  1.095728463
#> ENSG00000148400_mutation -0.0989406 0.04244735  0.1444102 -0.081025546
#> ENSG00000099810_loss      0.3328451 0.53394399 -0.1096147  0.003899453
#>                               boot_4
#> ENSG00000264545_loss     1.116271049
#> ENSG00000147889_loss     1.172808630
#> ENSG00000224854_loss     1.139336521
#> ENSG00000148400_mutation 0.008572771
#> ENSG00000099810_loss     0.583670072
#> 
#> Example Association Estimate Matrix for RNA with OS: 
#>                      boot_0      boot_1      boot_2      boot_3       boot_4
#> ENSG00000121410 -0.06064136  0.08833406  0.19740235 -0.23032144  0.042520410
#> ENSG00000148584  0.05061313  0.19634699  0.13935280 -0.04349620 -0.308207853
#> ENSG00000175899  0.02594285  0.03512339  0.06672908 -0.11478157 -0.057850041
#> ENSG00000166535 -0.09119894 -0.16775731 -0.97860178 -0.05163522  0.036242601
#> ENSG00000184389 -0.13155891 -0.34544421 -0.27764175 -0.10397644  0.009883494
#> 
#> Example Endpoint Data: 
#>        MRD29   EFS    OS
#> PARASZ  0.00 3087+ 3087+
#> PARAYM  0.00 3399+ 3399+
#> PARCVM  0.00 2424+ 2424+
#> PAREGZ  0.49 3087+ 3087+
#> PARFDL  0.00 3075+ 3075+
#> 
#> BEAM Model Specifications: 
#>           name    mtx                                         mdl
#> 1 Lesion.MRD29 Lesion    lm(MRD29~mtx.row,data=main.data,model=T)
#> 2    RNA.MRD29    RNA    lm(MRD29~mtx.row,data=main.data,model=T)
#> 3   Lesion.EFS Lesion coxphf2(EFS~mtx.row,data=main.data,model=T)
#> 4      RNA.EFS    RNA coxphf2(EFS~mtx.row,data=main.data,model=T)
#> 5    Lesion.OS Lesion  coxphf2(OS~mtx.row,data=main.data,model=T)
#> 6       RNA.OS    RNA  coxphf2(OS~mtx.row,data=main.data,model=T)
#> 
#> BEAM data used to create Association Estimate Matrices: 
#> main.data: 265 rows and 8 columns. 
#>  
#>            ID MRD29 RNA.clm Lesion.clm Lesion.id
#> PARASZ PARASZ  0.00      46         21    PARASZ
#> PARAYM PARAYM  0.00      47        108    PARAYM
#> PARCVM PARCVM  0.00      15         84    PARCVM
#> PAREGZ PAREGZ  0.49     170        142    PAREGZ
#> PARFDL PARFDL  0.00     184        175    PARFDL
#> 
#> mtx.data: 
#>   mtx.data Lesion: 265 columns linked to 265 rows of main.data. 
#>   mtx.data RNA: 264 columns linked to 264 rows of main.data. 
#> 
#> Lesion: 
#>                          PARWNW PASXUC PATXNR PASYIS PATBGC
#> ENSG00000264545_loss          1      1      1      1      0
#> ENSG00000147889_loss          1      1      1      1      0
#> ENSG00000224854_loss          1      1      1      1      0
#> ENSG00000148400_mutation      1      1      1      1      0
#> ENSG00000099810_loss          1      1      1      1      0
#> 
#> RNA: 
#>                    PARFIH     PARFPJ     PARFXJ     PARKLK     PARLJA
#> ENSG00000121410 0.4976379 0.29994795 1.13973142 0.32584690 0.35940872
#> ENSG00000148584 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000
#> ENSG00000175899 0.0176369 0.11316706 0.02913480 0.00992041 0.02672925
#> ENSG00000166535 0.0000000 0.02261638 0.01278318 0.01735184 0.00000000
#> ENSG00000184389 0.1067503 1.46126661 0.32734246 0.56042150 0.49385225
#> 
#> mtx.anns: 
#>   Lesion: 20 rows and 2 columns. 
#>   RNA: 20 rows and 2 columns. 
#> 
#> Lesion: 
#>                         id            gene
#> 1     ENSG00000264545_loss ENSG00000264545
#> 2     ENSG00000147889_loss ENSG00000147889
#> 3     ENSG00000224854_loss ENSG00000224854
#> 4 ENSG00000148400_mutation ENSG00000148400
#> 5     ENSG00000099810_loss ENSG00000099810
#> 
#> RNA: 
#>                id            gene
#> 1 ENSG00000121410 ENSG00000121410
#> 2 ENSG00000148584 ENSG00000148584
#> 3 ENSG00000175899 ENSG00000175899
#> 4 ENSG00000166535 ENSG00000166535
#> 5 ENSG00000184389 ENSG00000184389
#> 
#> anns.mtch: 
#>   mtx.data mtx.anns id.clm nrow.mtx nrow.ann nrow.map
#> 1   Lesion   Lesion     id       20       20       20
#> 2      RNA      RNA     id       20       20       20
#> 
#> set.data: 40 rows assigning sets to data.mtx rows. 
#>             set.id mtx.id               row.id
#> 9  ENSG00000081760    RNA      ENSG00000081760
#> 8  ENSG00000094914    RNA      ENSG00000094914
#> 25 ENSG00000099810 Lesion ENSG00000099810_loss
#> 19 ENSG00000099810    RNA      ENSG00000099810
#> 14 ENSG00000109576    RNA      ENSG00000109576
#> 10 ENSG00000114771    RNA      ENSG00000114771
#> 
#>  
#> set.anns:  rows of set annotations.
#>  
#> boot.index: 11 rows and 265 columns of bootstrap indices. 
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]    1    2    3    4    5
#> [2,]  179   14  195  118  229
#> [3,]  108    8  114  261   29
#> [4,]   55   19  241  218  155
#> [5,]  145  200  211   69   46