Prepare the beam.specs data.frame for BEAM model fitting. Specifies the univariate models needed to compute the BEAMR set p-values.
Arguments
- beam.data
A beam.data object from prep_beam_data
- endpts
A vector of endpoint variable names in main.data
- firth
A logical value. If TRUE (defaul) fit Firth penalized Cox model to account for monotone likelihood in the presence of rare events or predictors. If FALSE fit usual Cox model.
- adjvars
Default NULL, optional vector of adjustment variable names in main.data
- endptmdl
Optional model specification data.frame with endpoint name column called "endpt" and model string column called "mdl"
Value
The beam.specs object, a data.frame specifying the omics-endpoint association models to be fit
Examples
data(clinf)
data(omicdat)
data(omicann)
data(setdat)
test.beam.data <- prep_beam_data(main.data=clinf, mtx.data=omicdat,
mtx.anns=omicann, set.data=setdat,
set.anns=NULL, n.boot=10, seed=123)
#> Checking inputs: Tue Jul 30 13:51:24 2024
#> Checking that each element of mtx.data is a matrix: Tue Jul 30 13:51:24 2024
#> Checking that each element of mtx.anns is a data.frame: Tue Jul 30 13:51:24 2024
#> Aligning main.data with each mtx.data: Tue Jul 30 13:51:24 2024
#> Working on mtx.data Lesion (1 of 2): Tue Jul 30 13:51:24 2024
#> Working on mtx.data RNA (2 of 2): Tue Jul 30 13:51:24 2024
#> Warning: Some ids not matched; returning NAs for those.
#> Working on mtx.anns: Tue Jul 30 13:51:24 2024
#> Matching matrix 1 with annotations: Tue Jul 30 13:51:24 2024
#> Matching matrix 2 with annotations: Tue Jul 30 13:51:24 2024
#> Checking set.data: Tue Jul 30 13:51:24 2024
#> Ordering and indexing set.data: Tue Jul 30 13:51:24 2024
#> Checking section 1 of 40 of set.data: Tue Jul 30 13:51:24 2024
#> Generating bootstrap index matrix: Tue Jul 30 13:51:24 2024
#> Packaging and returning result: Tue Jul 30 13:51:24 2024
#Without adjustment
prep_beam_specs(beam.data=test.beam.data, endpts=c("MRD29", "OS", "EFS"),
firth=TRUE)
#> MRD29 is continuous, fitting lm
#> OS is survival endpoint, fitting coxphf2
#> EFS is survival endpoint, fitting coxphf2
#> name mtx mdl
#> 1 Lesion.MRD29 Lesion lm(MRD29~mtx.row,data=main.data,model=T)
#> 2 RNA.MRD29 RNA lm(MRD29~mtx.row,data=main.data,model=T)
#> 3 Lesion.OS Lesion coxphf2(OS~mtx.row,data=main.data,model=T)
#> 4 RNA.OS RNA coxphf2(OS~mtx.row,data=main.data,model=T)
#> 5 Lesion.EFS Lesion coxphf2(EFS~mtx.row,data=main.data,model=T)
#> 6 RNA.EFS RNA coxphf2(EFS~mtx.row,data=main.data,model=T)
# With adjustment
prep_beam_specs(beam.data=test.beam.data, endpts=c("OS", "EFS"),
adjvars=c("MRD29"), firth=TRUE)
#> OS is survival endpoint, fitting coxphf2
#> EFS is survival endpoint, fitting coxphf2
#> name mtx mdl
#> 1 Lesion.OS Lesion coxphf2(OS~mtx.row+MRD29,data=main.data,model=T)
#> 2 RNA.OS RNA coxphf2(OS~mtx.row+MRD29,data=main.data,model=T)
#> 3 Lesion.EFS Lesion coxphf2(EFS~mtx.row+MRD29,data=main.data,model=T)
#> 4 RNA.EFS RNA coxphf2(EFS~mtx.row+MRD29,data=main.data,model=T)